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14. The Role of E,+ Vibrations in the 2600-A. Benzene Band 
System. 

By D. P. CRAIG. 

The observation by Garforth and Ingold (J., 1948, 417) that the two E,'(C) vibrationsdiffer 
strongly in their power to  perturb the forbidden A t  - transition in benzene receives an 
explanation in terms of an assumed mechanism for the perturbation of electronic states by 
atomic vibrations. The mechanism, which in spite of a certain reasonableness must at present 
be treated as heuristic, is that each C atom in the benzene ring acts towards non-neighbours 
as a small positive charge but is completely screened from its neighbours. Electronic wave 
functions are approximated in terms of structures, and of these the polar ones here play the 
central part. The energy matrix components are changed in the course of vibrations by electro- 
static action between the small charges already mentioned and the unit charges of polar 
structures. The 606-cm.-1 vibration can then be calculated to  be more effective, by a factor 
greater than 100 times, than the 1596-cm.-1 vibration in causing the appearance of the 
forbidden transition. 

HERZBERG and TELLER (2. physikal. Chem., 1933, B ,  21, 410) established the principles, so 
far as the demands of symmetry are concerned, which govern the disturbances caused to  
electronic states by atomic vibrations in polyatomic molecules. A spectral transition forbidden 
by electronic selection rules is made allowed if the symmetry properties of the atomic 
vibrations change during the transition by a component I'yib. such that 

This agrees with the experimental finding. 

x rExc. x r e b .  r z ,  ry, or rz 
where rad and r E x &  are the representations to which the ground and the excited electronic wave 
functions belong and rz, for example, that of the x vector. However, Garforth and Ingold 
(J., 1948, 417) showed that, of the four E: vibrations of benzene capable in principle of making 
the 2600 A. transition appear, only two actually do so and in these two the motions of the 
C skeleton are geometrically similar. The figure is part of a block of illustrations used by 
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Ed Vibration forms of benzene. 

Bailey, Ingold, Poole, and Wilson (J. ,  1946, 222) to show the vibration forms of benzene and 
i t  is reproduced here with their permission. It depicts a set of basic E,' motions from which, 
by linear combination, all possible E,f motions of benzene can be set up. Garforth and Ingold 
(Zoc. cit.) find that the two vibrations with a large component of either the C1 or the H1 motion- 
in which, that is, the C hexagon is distorted principally by angle bending and not by bond 
stretching-are effective, whereas those with a large component of C2 or H2 are ineffective. 
The latter equally with the former satisfy the symmetry demands but fail to appear on account 
of some more subtle detail of the atomic motions. To understand how this can happen a 
mechanism has to be assumed by which the electronic energy comes to depend on the nuclear 
motion, and this should make it plain how the observed differences come about. A very simple 
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mechanism is applied in this paper to study those two vibrational motions, compounded from 
C1 and C2, in which the carbon atoms have large amplitudes, and it is found that one of these 
could be very much more effective than the other in this phenomenon. The effective one is 
the predominantly bending motion, as required by experiment. 

The intense absorption band of benzene a t  1700 A. records an Al, - E;; transition, and any 
forbidden transition which appears a t  longer wave-lengths does so mainly by borrowing intensity 
from this strong band. We concentrate therefore on finding to what extent Eo+ vibrations cause 
mixing of the final B,, state of the forbidden transition with the final E;; state of the allowed 
one. The coefficient for this mixing is, in perturbation theory, 

in which $!J and E respectively denote unperturbed wave functions and energies, and H(Ez)  is 
the perturbing potential of a hexagon distorted in an E,’ vibration. The intensity of the 
transition ending at  the Bh state will bear the same ratio to the allowed Al, - E; intensity as 
the square of the expression (1) bears to unity ; hence to compare the perturbing powers of the 
two E,‘ vibrations (i.e., the two C vibrations) we have to compare the squares of (1) evaluated 
for them. 

We may write approximate forms for $!J(E;) and #(Beu) in terms of the following structures : 

D E F G H I J K L 

Two EL wave functions may be made up from these and both involve only the polar structures 
A to L. Of the two the following one alone may be the final state for intense transitions : 

#(E,) = ( l / d Z ) ( 2 A  - 2B + C - D - E + F - 2G + 2H - I + J + K - L) . (2) 
A degenerate partner to (2), chosen orthogonal to it, is inactive in the mechanism we consider 
and hence may be neglected. The BzU state which, to appear in the spectrum, hzs to become 
mixed with #(E;) has non-polar as well as polar components. We follow in detail only the 
polar part, $!J(BgU). The contribution by the non-polar part is in the same sense and proportional, 
but is smaller because i t  appears multiplied by the overlap integral between neighbouring 
atomic orbitals. We therefore take 

#(Beu) = (l/’fl2)(A f B - C - D + E + F - G - H + I + J - K - L) . . (3) 

If H be the Hamiltonian for the undistorted hexagonal shape it follows from the symmetry of 
the problem that 

A distortion from hexagonal shape replaces H in (4) by H + H, H being a perturbing potential 
having the symmetry of the distortion. When H transforms like E,+ the matrix component 
analogous to that in (4) has a part which transforms like AIg and is not therefore necessarily 
zero. 

J#(E;)H$(B%)dr = 0 . . . . . . . .  - (4) 

Small terms being neglected, the totally symmetrical part is 

f+(E;)H#(Bsn)dT = (1/122/2)0(hHA4) - 2(BHB) - (CHC) + (DHD) . . etc) 
= (1/24Z){(AHA) - (BHB)) . . . . . . . . .  (5)  

where (AHA) = J-AHAdr 

the second line following from the first because lf transforms like E,’. The value of this 
expression, put in (l), determines the intensity of the forbidden band system. Evidently its 
value depends on the development of energy differences under the perturbing vibration between 
structures in pairs like +4 and B which have opposite charge displacements. We therefore 
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have to investigate the right-hand side of (5) by seeing how the energies of oppositely charged 
structures are split by atomic motions of specified types. 

The energies of these polar structures change during the course of vibrations because the 
internuclear distances change, and this alters the mutual energy of the charged atoms and the 
other nuclei. Since at distances greater than a bond length the field of an atom is dominantly 
electrostatic (the exchange terms being negligibly small) the energy changes we wish to study 
may be taken to arise from the electrostatic action between the unit positive and negative 
charges in the structure, and the field of the incompletely screened nuclear charge of the other 
atoms. Now screening is most complete in the directions of maximum electron density (Le., 
bond directions) so i t  is evident from the outset that a distinction must be made between 
neighbour and non-neighbour interactions, the former being smaller than the latter by virtue 
of the more complete screening along the line of the Q bonds. Accordingly we propose, as the 
simplest reasonable model, that any nucleus acts toward a non-neighbour as a small positive 
charge qe, but is completely shielded from its immediate neighbours by the bonding electrons. 
Interest throughout centres on energy differences developed between oppositely charged 
structures, so that no attention need be paid to the interaction between the charged atoms 
which changes by the same amount in the two structures. We thus suppose that in any 
structure there are on the non-charged atoms small residual charges qe, and that energy changes 
in distorted molecules are a consequence of interactions between the two charged atoms and 
these small charges on non-neighbours. 

Since the displacements 
are small compared with.a bond length we use the differential expression for change in electro- 
static energy : 

We now proceed with the calculation of the perturbation energies. 

6E = (qea/rz)66r E d(r i / r2 )8r ,  where d = qe2/rg and rb = 1.40 A. 

Since +(BBU) is symmetric, but $(El) antisymmetric, to rotation about the x axis, antisymmetry 
in the vibrational motion will be necessary to cause mixing. Only the lower forms of C1 and 
C2 need therefore be studied. We suppose the atoms in the lower form of C1 to be displaced a 
distance 6~12,  and in the lower form of C2 the clockwise displacements are 6r and the anticlock- 
wise ones &/2. This choice is merely a convenient one for the next step, and the composite 
motions have later to be normalised to  unit kinetic energy. 

Structure A, distorted according to C1 (lower form) 

The distortion energies are : 

CSE = -2cA(1/4 + 2/3/12)& 

Structure A, distorted according to  C2 (lower form) 

Substituting in (5) ,  we have 
C8E = + d 6 r  

. . . (6) 1 Jt,b(Bs,)H(C1)t,h(Ei)dr =‘-1/2(1/4 + d 3 / 1 2 )  cA& = -0.558cAGr 
$(Bgn)H(C2)$(EC)dz = 1 / 2 2 / 2 d s r  = 0.354cAGr 

The actual molecular motions in E: vibrations are combinations of C1 and C2 in proportions 
determined by the force system opposing distortions of the equilibrium hexagon, To find 
these actual motions we proceed in the simplest way, by supposing the C-H groups concentrated 
in mass points and taking a valence-force field with C-C stretching and C-C-C planar bending 
force constants as found by Ingold and his collaborators (J., 1948, 491). Referred to the 
lower forms of the illustrated motions, the actual motions after being normalised to equal 
kinetic energies are : 

0.90C1 - 0.25C2 : calc. 616 cm.-1 (exptl. 606 cm.-l) 
0°44C1 + 0.5262 : calc. 1657 cm.-l (exptl. 1596 cm.-l) 

Using (6), we now find the matrix components for the mixing of Ben and E; states by these two 
vibrations. 

606 cm.-l : ~$(Bgu){0.90If(C1) - 0.25 ff (C2))$(E;) dz 
= - 0 . 5 9 1 d G ~  

1696 cm.-l : J’$(Bgn)(O*44H(C1) + 0*52H(C2))$(E;) d7 
= -0.063CA6~ 
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The relative effectiveness of the vibrations per unit excursion of the nuclei is the ratio of the 
squares of these quantities. Since the low-frequency motion has a larger amplitude than the 
high, the ratio of squares has to be increased in favour of the 606-cm.-1 vibration by a factor 
(1696/606), making the final result : 

Intensity in Alg - Ben due to 606 cm.-l 
Intensity in At - Ben due to 1596 cm.-l - (-0.063)2 

(-0*591)2 1696 = 230 : - 
606 

We do not wish to insist on the numerical magnitude of the ratio, which is rather sensitive to  
the elastic constants chosen to determine the motions. However, in making the forbidden 
transition allowed, the 606-cm.-l vibration is certainly more effective, by a factor greater than 
100 times, than the 1596 cm.-l, and this agrees with the observation by Garforth and Ingold 
(Zoc. cit.) that the latter vibration is actually inactive, or very weak, in the spectrum. 

With one further assumption it is possible to form 
an estimate of the stolen intensity in the 2600-~. band system. Such a calculation, compared 
with experiment, gives a partial check of the mechanism of perturbation that has been assumed. 
The quantity required for evaluating (1) is qe, from which& can be found. For this we use 
Slater's rules for atomic screening constants, and suppose that a t  remote points a nucleus has 
the field expected outside the atomic configuration (1~)~(2s ,  2p)4. This gives qe = -0.6 
electron. The root mean square excursion of a nucleus in the 606-cm.-l vibration is 0.064 A., 
and the coefficient of #(Ben) in the full wave function for the Ben state (including non-polar 
as well as polar structures) is about 0.5. 

A n  estimate of the intensity Alg - Ben. 

The perturbation matrix component is 

[#(B,,)H#(E;)dT = 0.09 eV. 
and this, through (l), gives f (calc.) = 0-0014 as the calculated stolen intensity. The 
experimental value is f (exptl.) = 0.002. The important 
thing is the agreement in order of magnitude and the calculation is satisfactory to that extent. 

I am very much indebted to Prof. C. K. Ingold, F.R.S., and to  Dr. Edward Teller, for discussions on 
this subject. I also thank Prof. Ingold and his collaborators for permission to  reproduce their diagram 
of vibration forms. The work described has been carried out during the tenure of a Turner and Newall 
Fellowship in the University of London. 

The close agreement is fortuitous. 
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